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Abstract: A radio labeling of a graph G is a function f from the set of vertices
V (G) to the set of non-negative integers such that |f(u) − f(v)| ≥ diam(G) +
1 − d(u, v) for every pair of distinct vertices u, v of G. The radio number of G,
denoted by rn(G), is the smallest number k such that G has radio labeling f with
max{f(v) : v ∈ V (G)} = k. In [11, Theorem 3], Liu gave a lower bound for the
radio number of trees and presented a class of trees, namely spiders, achieving the
lower bound. A tree T is called a lower bound tree for the radio number if the
radio number of T is equal to the lower bound given in [11, Theorem 3]. In this
paper, we give two techniques which convert any tree to lower bound tree for the
radio number by adding new vertices to given tree.
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1. Introduction
In a telecommunication system, the interference constraints between two trans-

mitters play a very important role to design radio networks. The channels are
assigned to the transmitters with least use of spectrum such that all the inter-
ference constraints are fulfilled for the radio network which is known as optimal
channel assignment. The level of interference between two transmitters is closely
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related to the locations between them. The closer the location higher the interfer-
ence is. In order to avoid the interference, the gap between the channels assigned
to transmitters should be larger. Two transmitters in the network are known as
very close transmitters if the interference between them is highest.

This optimal channel assignment problem is also studied using graph model
in which transmitters are represented by vertices and two vertices are adjacent if
the corresponding transmitters are very close. A radio labeling of a graph G is a
mapping f from the set of vertices to the set of non-negative integers such that the
following holds for any two distinct vertices v1, v2 ∈ V (G):

|f(v1)− f(v2)| ≥ diam(G) + 1− d(v1, v2).

The span of f , denoted by span(f), is defined as span(f) = max{|f(v1)− f(v2)| :
v1, v2 ∈ V (G)}. The radio number of G is defined as

rn(G) = min{span(f) : f is a radio labeling of G}.

Observe that any optimal radio labeling always assign 0 to some vertex. Since
d(v1, v2) ≤ diam(G), note that a radio labeling is a one-to-one integral function
from the set of vertices to the set of non-negative integers. Hence a radio labeling
f induces a linear order u0, u1, . . . , un−1 of vertices of G such that

0 = f(u0) < f(u1) < . . . < f(un−1) = span(f).

A linear order u0, u1, . . . , un−1 is called an optimal linear order if it is induced by
some optimal radio labeling f . We denote an optimal linear order u0, u1, . . . , un−1

of V (G) by u⃗. It is clear that an optimal linear order u⃗ of V (G) is not unique. In
fact, if ui, 0 ≤ i ≤ n− 1 is an optimal linear order then a linear order vi = un−1−i

is also an optimal linear order.
A radio labeling problem is one of the hard graph labeling problems. The

determination of radio number for any graph is a tough task and it is known for
handful graph families only. A brief survey on the radio number of graphs is
published by Chartrand and Zhang in [4]. The radio number of trees attracted
many researchers. The radio number of paths was studied by Chartrand et al. in
[6] which was continued by Liu and Zhu in [12] and they determined the exact
radio number for it. In [11], Liu gave a lower bound for the radio number of trees
and presented a class of trees namely spiders achieving this lower bound. In [1,
2], Bantva et al. gave a lower bound which is same as one given by Liu in [11]
but using different notations, and presented a necessary and sufficient condition to
achieve this lower bound. Using these results, they determined the radio number
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for three classes of trees namely banana trees, firecrackers trees and a special class
of caterpillars achieving this lower bound. In [10], Li et al. determined the radio
number of complete m-ary trees while in [8], Halász and Tuza determined the radio
number of level-wise regular trees.

Denote the lower bound for the radio number of trees given in [11, Theorem 3]
by lb(T ). A tree T is called lower bound tree for the radio number if rn(T ) = lb(T )
and non-lower bound tree otherwise. In this paper, we give two techniques which
convert any tree to a lower bound tree. The techniques are also useful to create
large lower bound trees by applying repeatedly. We illustrate both the techniques
with examples.

2. Preliminaries

In this section, we define terms and notation which are necessary for the present
work. We also recall some known results which will be used in the present work.
We follow [13] for standard graph theoretic definitions and notations. The distance
dG(u, v) between two vertices u and v is the length of a shortest path joining u
and v in G. The diameter of a graph G is max{dG(u, v) : u, v ∈ V (G)}. A tree
T is a connected acyclic graph. For a tree T , denote vertex set and edge set by
V (T ) and E(T ). In [11], the weight of T from v ∈ V (T ) is defined as wT (v) =∑

u∈V (T ) dT (u, v) and the weight of T as w(T ) = min{wT (v) : v ∈ V (T )}. A vertex

v ∈ V (T ) is a weight center of T if wT (v) = w(T ). Denote the set of weight
center(s) by W (T ). In [11], it is proved that the following hold for W (T ).

Lemma 2.1. [11] If w is a weight center of a tree T . Then each component of
T − w contains at most |V (T )|/2 vertices.

Lemma 2.2. [11] Every tree T has one or two weight centers, and T has two
weight centers, say, W (T ) = {w,w′} if and only if ww′ is an edge of T and T−ww′

consists of two equal sized components.

In [11], the author viewed a tree T rooted at a weight center w and defined the
level function on V (T ) from fix root w by Lw(u) = dT (w, u) for any u ∈ V (T ). For
any two vertices u and v, if u is on the (w, v)-path (w is a weight center), then u is
an ancestor of v, and v is descendent of u. If u be a neighbour of a weight center w
then the subtree induced by u together with all its descendants is called a branch
at u. Two branches are called different if they are induced by two different vertices
adjacent to the same weight center w. Using these terms and notations, Liu gave a
lower bound for the radio number of trees and a necessary and sufficient condition
to achieve the lower bound as following in [11].
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Theorem 2.3. Let T be an n-vertex tree with diameter d. Then

rn(T ) ≥ (n− 1)(d+ 1) + 1− 2w(T ). (2.1)

Moreover, the equality holds if and only if for every weight center w∗, there exist a
radio labeling f with 0 = f(u0) < f(u1) < . . . < f(un−1), where all the following
hold (for all 0 ≤ i ≤ n− 2);

(a) ui and ui+1 are in different branches (unless one of them is w∗);

(b) {u0, un−1} = {w∗, v}, where v is some vertex with Lw∗(v) = 1;

(c) f(ui+1) = f(ui) + d+ 1− Lw∗(ui)− Lw∗(ui+1).

A tree T for which rn(T ) is given by the right-hand side of (2.1) is called a lower
bound tree and non-lower bound tree otherwise. Some known lower bound trees as
well as non-lower bound trees are as follows. The paths P2k are lower bound trees
while P2k+1 are not lower bound trees. The banana trees and firecrackers trees
are lower bound trees whose radio number is given in [2]. The complete m-ary
trees whose radio number is determined in [10] are lower bound trees if m ≥ 3
and non-lower bound trees if m = 2. The level-wise regular trees when all internal
vertices have degree more than two which are presented in [8] are lower bound
trees. Note that even an addition or a deletion of a vertex or an edge make lower
bound tree to non-lower bound tree and vice-versa. For example, it is known that
a path P2k+1 (k ≥ 1) is not a lower bound tree but deletion of one leaf vertex from
a path P2k+1 makes a path P2k which is a lower bound tree. Similarly, the converse
procedure of above for a path P2k makes a lower bound tree to non lower bound
tree.

Further recall that a tree represents a network of transmitters and it is expected
such a tree is a lower bound tree as the lower bound tree minimize the spectrum
of channels. But it is not always possible that given tree is a lower bound tree and
then the following natural question arise.

Question 2.4. Is it possible to convert any non-lower bound tree T to a lower
bound tree T ′ by adding new vertices to T ?

The answer of the above question is affirmative. We give two techniques which
convert any tree to a lower bound tree by adding some extra vertices. These
techniques can also be used to known lower bound tree to generate large lower
bound trees. As a result, the techniques can be used indefinitely to generate more
lower bound trees.
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3. Main Results

In this section, we continue to use the terminology and notation defined in the
previous section. We present some techniques which convert any tree T to the
lower bound tree by adding new vertices at center with some conditions.

Let T be any tree of order n and diameter d ≥ 3. We view a tree T rooted at its
C(T ). That is, if C(T ) = {w} then T is rooted at w and if C(T ) = {w,w′} then T
is rooted at both w and w′ (both are at level 0). Let Tu be the branch induced by
a vertex u adjacent to w ∈ C(T ). Denote the children of u by u0, u1, . . . , ud(u)−1.
Inductively, denote the children of ui1i2...it(i1, i2, . . . , it ∈ N ∪ {0}, 1 ≤ t ≤ d/2− 2)
by ui1i2...itit+1(it+1 ∈ N ∪ {0}). We find the path partition of a branch Tu of T
as follows: Choose u as a one end vertex and find a longest path in Tu, say this
path is Pm1 , where 0 ≤ m1 ≤ d/2. Take V (Tu) \ V (Pm1). Note that the resulting
graph is a forest. Let ui1,i2,...,is ∈ V (Tu) \ V (Pm1), where 1 ≤ s ≤ d/2 − 1 be the
closest descendent vertex of u in Tu then choose ui1,i2,...,is as a one end vertex and
find longest path in Tu \ Pm1 , say this path is Pm2 . Continue this process until the
remaining forest has vertex of degree three. The single vertex is considered as P1 in
this operation. Let T1, T2, . . . , Tk be the branches of T−w when C(T ) = {w}. Then
partition each branch Ti, 1 ≤ i ≤ k as describe above which we called the path par-
tition of tree T rooted at w. Let Cw = {n1P1, n2P2, . . . , nd/2Pd/2} be the collection
of all paths obtained by path partition of T rooted at w, where niPi, 1 ≤ i ≤ d/2
denote the ni copies of path Pi. Let Tw and Tw′ be the components of T−ww′ when
C(T ) = {w,w′}. Note that both Tw and Tw′ are trees. Now we view Tw and Tw′

rooted at w and w′, respectively and find its path partition as described above. Let
Cw = {n1P1, n2P2, . . . , n⌊d/2⌋P⌊d/2⌋} and Cw′ = {n′

1P1, n
′
2P2, . . . , n

′
⌊d/2⌋P⌊d/2⌋} be the

collection of all paths obtained by path partition of Tw and Tw′ , respectively. We
now construct a tree Tp using a given tree T as follows: (1) If C(T ) = {w} then join
one end vertex of each copy of path Pi ∈ Cw and one more vertex w1 by an edge to
w; (2) If C(T ) = {w,w′} then join one end vertex of each copy of path Pi of Cw′

by an edge to w and each copy of path Pj of Cw by edge to w′ and one more vertex
to each w and w′ by an edge. It is clear that |Tp| = 2n and diam(Tp) = diam(T ).

Lemma 3.1. Let Tp be the tree obtained as above, then the following hold for Tp.

(a) If C(T ) = {w} then w ∈ W (Tp),

(b) If C(T ) = {w,w′} then one of {w,w′} or, both w and w′ are in W (Tp).

Proof. We consider the following two cases.

Case - 1. |C(T )| = 1.
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If possible then assume that w ̸∈ W (Tp). Note that there are two possibilities
forW (Tp); (1) |W (Tp)| = 1, (2) |W (Tp)| = 2. We consider both the cases separately
as follows.

Subcase - 1. |W (Tp)| = 1.

In this case, let W (Tp) = {w1}. Since w ̸∈ W (Tp), it is clear that w ̸= w1. Let
T1, T2, . . . , Tk be the components of Tp − w1. Without loss of generality, assume
that w ∈ T1 then note that |T1| ≥ n+ 1 which is a contradiction with Lemma 2.1.

Subcase - 2. |W (Tp)| = 2.

In this case, letW (Tp) = {w1, w2}. Since w ̸∈ W (Tp), it is clear that w ̸= w1, w2.
Let T1 and T2 be two component of Tp −w1w2. Without loss of generality, assume
that w ∈ T1 then note that |T1| ≥ n+ 1 which is a contradiction with Lemma 2.2.

Thus, in both the subcases above, our assumption w ̸∈ W (Tp) is wrong and
hence w ∈ W (Tp).

Case - 2. C(T ) = {w,w′}.
If possible then assume that w,w′ ̸∈ W (Tp). Again note that there are two

possibilities for W (Tp); (1) |W (Tp)| = 1, (2) |W (Tp)| = 2. We consider both the
cases separately as follows.

Subcase - 1. |W (Tp)| = 1.

In this case, let W (Tp) = {w1}. Since w,w′ ̸∈ W (Tp), it is clear that w,w
′ ̸= w1.

Let T1, T2, . . . , Tk be the component of Tp−w1. Without loss of generality, assume
that w ∈ T1 then note that |T1| ≥ n+ 1 which is a contradiction with Lemma 2.1.

Subcase - 2. |W (Tp)| = 2.

In this case, let W (Tp) = {w1, w2}. Since w,w′ ̸∈ W (Tp), we have w,w′ ̸=
w1, w2. Then Tp − w1w2 has two equal size component, say T1 and T2. Since
ww′ ̸= w1w2, w and w′ belongs to the same component of Tp−w1w2. Without loss
of generality, assume w,w′ ∈ T1 then note that |Tp| ≥ n+2 which is a contradiction
with Lemma 2.2.

Thus, in both the subcases above, our assumption w,w′ ̸∈ W (Tp) is wrong and
hence one of {w,w′} or both w and w′ are in W (Tp) which completes the proof.

Theorem 3.2. Let T be any tree of order n and diameter d ≥ 2, and Tp is a tree
obtained from T as above. Then Tp is a lower bound tree and

rn(Tp) = (2n− 1)(d+ 1)− 2w(Tp) + 1. (3.1)

Proof. We consider the following two cases.
Case - 1. |C(T )| = 1.
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Let C(T ) = {w} then by Lemma 3.1, it is clear that w ∈ W (Tp). We view a
tree T rooted at w. Denote v1, v2, . . . , vn be the vertices of T and v′1, v

′
2, . . . , v

′
n be

the newly added vertices as descendent of w such that d(v′i, vi+1) ≤ d/2 + 1 for
1 ≤ i ≤ n. By the construction of Tp observe that such an ordering is possible.
Define a linear order u0, u1, . . . , u2n−1 of V (Tp) as follows: Set u0 = v1, u2n−1 = v′n
and for 1 ≤ t ≤ 2n− 2 as follows:

ut =

{
v′(t+1)/2, if t is odd,

v(t/2)+1, if t is even.

Then note that u0 ∈ W (T ), u2n−1 ∈ N(W (T )) and, ut and ut+1 are in different
branches of Tp. Define f by f(u0) = 0 and f(ui+1) = f(ui)+d+1−L(ui)−L(ui+1)
for 0 ≤ i ≤ 2n− 2.

Claim - 1. f is a radio labeling of Tp and span(f) = (2n− 1)(d+1)− 2w(Tp)+ 1.
Let ui and uj be two arbitrary vertices of Tp. If j − i = 1 then f(uj)− f(ui) =

f(ui+1)− f(ui) = d+ 1−L(ui)−L(ui+1) ≥ d+ 1− d(ui, ui+1) = d+ 1− d(ui, uj).
If j − i ≥ 2 then f(uj)− f(ui) ≥ 2(d + 1)− d(ui, ui+1)− d(ui+1, uj) = 2(d + 1)−
2(d/2 + 1) ≥ d ≥ d + 1 − d(ui, uj) as d(ui, uj) ≥ 1. Hence f is a radio labeling of
Tp and the span of f is

span(f) = f(u2n−1)− f(u0)

=
2n−2∑
t=0

f(ut+1)− f(ut)

=
2n−2∑
t=0

(d+ 1− L(ut)− L(ut+1))

=
2n−2∑
t=0

d+ 1−
2n−2∑
t=0

(L(ut) + L(ut+1))

= (2n− 1)(d+ 1)− 2
2n−2∑
t=0

L(ut) + L(u2n−1)

= (2n− 1)(d+ 1)− 2w(Tp) + 1.

Case - 2. |C(T )| = 2.
Let C(T ) = {w,w′} then by Lemma 3.1, either one of {w,w′} or both w and

w′ are in W (Tp). Without loss of generality assume that w ∈ W (Tp). We view a
tree rooted at w. Let T1 and T2 be two components of T −ww′. Denote vertices of
T1 by w = v1, v2, . . . , v|T1| and vertices of T2 by v|T1|+1, . . . , vn = w′. Denote newly



266 South East Asian J. of Mathematics and Mathematical Sciences

added vertices as descendent to w′ by v′1, v
′
2, . . . , v

′
|T1| and newly added vertices as

descendent to w by v′|T1|+1, . . . , v
′
n such that d(v′i, vi+1) ≤ (d+3)/2 for 1 ≤ i ≤ 2n−2.

Note that such an ordering is possible by the construction of Tp. Define a linear
order u0, u1, . . . , u2n−1 of V (Tp) as follows: Set u0 = v1 = w, u2n−1 = vn = w′ and
for 1 ≤ t ≤ 2n− 2 as follows: For 1 ≤ t ≤ 2|T1| − 1, define

ut =

{
v′(t+1)/2, if t is odd,

vt/2+1, if t is even.

and for 2|T1| ≤ t ≤ 2n− 2, let

ut =

{
v(t+1)/2, if t is odd,
v′t/2+1, if t is even.

Then note that u0 ∈ W (Tp), u2n−1 ∈ N(u0) and ut, ut+1 are in different branches
of Tp. It is clear that d(ui, ui+1) ≤ (d+3)/2. Define f by f(u0) = 0 and f(ui+1) =
f(ui) + d+ 1− L(ui)− L(ui+1) for 1 ≤ i ≤ 2n− 2.

Claim - 2. f is a radio labeling of Tp and span(f) = (2n− 1)(d+1)− 2w(Tp)+ 1.
Let ui and uj be two arbitrary vertices of Tp. If j − i = 1 then f(uj)− f(ui) =

f(ui+1)− f(ui) = d+ 1−L(ui)−L(ui+1) ≥ d+ 1− d(ui, ui+1) = d+ 1− d(ui, uj).
If j − i ≥ 2 then f(uj)− f(ui) ≥ 2(d + 1)− d(ui, ui+1)− d(ui+1, uj) = 2(d + 1)−
2((d+3)/2) = d−1 ≥ d+1−d(ui, uj) as d(ui, uj) ≥ 2. Hence f is a radio labeling
of Tp and the span of f is

span(f) = f(u2n−1)− f(u0)

=
2n−2∑
t=0

f(ut+1)− f(ut)

=
2n−2∑
t=0

(d+ 1− L(ut)− L(ut+1))

=
2n−2∑
t=0

d+ 1−
2n−2∑
t=0

(L(ut) + L(ut+1))

= (2n− 1)(d+ 1)− 2
2n−2∑
t=0

L(ut) + L(u2n−1)

= (2n− 1)(d+ 1)− 2w(Tp) + 1.

Example 3.1. In Figure 1, a tree T with |C(T )| = 1 (whose path partition is
Cw = {2P3, P2, 2P1}) and the tree Tp obtained from T by above describe procedure
are shown along with an ordering of vertices and an optimal radio labeling.
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u /00
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u /134u /206

u  /4012 u /268

u  /5316

u  /6520

u  /3210 u  /4714
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T
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u /175

u /103u /41

u /237

u  /3611

u  /5015

u  /6219

u  /5617

u  /6821

u /299
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Figure 1: A tree T (left) and its Tp (right) with an optimal radio labeling such that
rn(Tp) = 68.

Example 3.2. In Figure 2, the trees T with |C(T )| = 2 (whose path partitions
are Cw = {P3, 2P1} and Cw′ = {P3, P1}) and the trees Tp obtained from T with an
ordering of vertices and an optimal radio labeling are shown.

11

u /00

u /72

u  /4112

u  /4413u /144

u  /6118

u  /3410

u  /4814

u  /6519

u /216

u /278

u  /5115 u  /5817

u  /5516
T

TP

u /41

u /309

u /113

u /185

u /247

u  /7521

u  /6920 u  /38

Figure 2: A tree T (left) and its Tp (right) with an optimal radio labeling such that
rn(Tp) = 75.

A tree is called a caterpillar if the removal of all its degree-one vertices results in
a path, called the spine. Denote the caterpillar with spine vertices {v1, v2, . . . , vn}
such that vi is adjacent to vi+1, 1 ≤ i ≤ n− 1 and d(v1) = m1 + 1, d(vn) = mn + 1
and d(vi) = mi + 2 for i = 2, . . . , n − 1 by C(m1,m2, . . . ,mn). For 1 ≤ i ≤ n,
denote the pendant vertices adjacent to vi by vi,j, where 1 ≤ j ≤ mi We construct
a tree Tc from given tree T of order n and diameter d as follows:
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Case - 1. |C(T )| = 1. In this case, note that diam(T ) is even. Let w be the
centre of tree T . Define Vi = {v ∈ V : d(w, v) = i}, where 1 ≤ i ≤ d/2. Denote

by |Vi| = ni. Then it is clear that
∑d/2

i=1 ni + 1 = n. Take a copy of caterpillar
C(nd/2, nd/2 − 1, . . . , n2 − 1, n1) and identify the vertex v1 with w. It is clear that
|Tc| = 2n and diameter diam(Tc) = d = diam(T ).

Case - 2. |C(T )| = 2. In this case, note that diam(T ) is odd. Let w and w′ be two
centres of T . Let T1 and T2 be two components of T − ww′ such that w ∈ T1 and
w′ ∈ T2. Let Vi = {v ∈ T1 : d(v, w) = i} and V ′

i = {v ∈ T2 : d(v, w′) = i}, where
1 ≤ i ≤ ⌊d/2⌋. Denote by |Vi| = ni and |V ′

i | = n′
i for 1 ≤ i ≤ ⌊d/2⌋. Identify the

vertex v1 of a copy of caterpillar C(n⌊d/2⌋, n⌊d/2⌋ − 1, . . . , n2 − 1, n1) with w′ and a
copy of caterpillar C(n′

⌊d/2⌋, n
′
⌊d/2⌋ − 1, . . . , n′

2 − 1, n′
1) with w. It is clear that Tc is

a tree with order 2n and diameter diam(Tc) = d = diam(T ).

Lemma 3.3. Let T be any tree of order n and diameter d ≥ 2, and Tc is a tree
obtained from T as describe above. Then the following holds.

(a) If C(T ) = {w} then w ∈ W (Tc).

(b) If C(T ) = {w,w′} then W (Tc) = {w,w′}.

Proof. We consider the following two cases.

Case - 1. C(T ) = {w}.
If possible then assume that w ̸∈ W (Tc). We consider the following two cases.

Subcase - 1. |W (Tc)| = 1.
Let W (Tc) = {w1}. Since w ̸= w1, T − w1 has a branch, say T1 consisting w.

It is clear that |T1| ≥ n+ 1, a contradiction with Lemma 2.1.

Subcase - 2. |W (Tc)| = 2.
Let W (Tc) = {w1, w2}. Observe that w ̸= w1, w2 as w ̸∈ W (Tc). Let T1 and

T2 be two components of Tc − w1w2. Since w ̸= w1, w2, without loss of generality,
assume that w ∈ T1 then note that |T1| ≥ n + 1 which is a contradiction with
Lemma 2.2.

Thus, we have a contradiction in both the above cases and hence, we obtain,
w ∈ W (Tc).

Case - 2. C(T ) = {w,w′}. In this case, it is easy to see that w,w′ ∈ W (Tc);
otherwise T − u contains a component with more than |Tc|/2 vertices if u ̸= w,w′

is a weight center of Tc which is a contradiction. Moreover note that ww′ is an
edge of Tc and by the construction of Tc, it is clear that wTc(w) = wTc(w

′). Hence,
by Lemma 2.2, we have W (Tc) = {w,w′} which completes the proof.
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Theorem 3.4. Let T be any tree of order n and diameter d ≥ 2, and Tc is a tree
obtained from T as above. Then Tc is a lower bound tree and

rn(Tc) = (2n− 1)(d+ 1)− 2w(Tc) + 1. (3.2)

Proof. We consider the following two cases.

Case - 1. |C(T )| = 1.
Let C(T ) = {w} then by Lemma 3.3, it is clear that w ∈ W (Tc). We view a

tree T rooted at w. Denote the vertices of a tree T by v1, v2, . . . , vn such that d/2 =
L(v1) ≥ L(v2) ≥ . . . ≥ L(vn) = 0. Denote the newly added vertices as v′1, v

′
2, . . . , v

′
n

such that 1 = L(v′1) ≤ L(v′2) ≤ . . . ≤ L(v′n) = d/2. By the construction of Tc

observe that for every 1 ≤ k ≤ d/2, {vi : L(vi) = k} = {v′i : L(v′i) = d/2− k + 1}.
Define a linear order u0, u1, . . . , u2n−1 of V (Tc) as follows: Set u0 = vn, u2n−1 = v′1
and for 1 ≤ t ≤ 2n− 2, set

ut =

{
v(t+1)/2, if t is odd,
v′(t+2)/2, if t is even.

Then note that u0 ∈ W (Tc), u2n−1 ∈ N(u0) and, ut and ut+1 are in different
branches of Tc. Also note that d(ut, ut+1) ≤ d/2 + 1 for 0 ≤ t ≤ 2n − 2. Define f
by f(u0) = 0 and f(ui+1) = f(ui) + d+ 1− L(ui)− L(ui+1) for 0 ≤ i ≤ 2n− 2.

Claim - 1. f is a radio labeling of Tc and span(f) = (2n− 1)(d+1)− 2w(Tc) + 1.
Let ui and uj be two arbitrary vertices of Tc. If j − i = 1 then f(uj)− f(ui) =

f(ui+1)− f(ui) = d+ 1−L(ui)−L(ui+1) ≥ d+ 1− d(ui, ui+1) = d+ 1− d(ui, uj).
If j − i ≥ 2 then f(uj)− f(ui) ≥ 2(d + 1)− d(ui, ui+1)− d(ui+1, uj) = 2(d + 1)−
2(d/2 + 1) ≥ d ≥ d + 1 − d(ui, uj) as d(ui, uj) ≥ 1. Hence f is a radio labeling of
Tc and the span of f is

span(f) = f(u2n−1)− f(u0)

=
2n−2∑
t=0

f(ut+1)− f(ut)

=
2n−2∑
t=0

(d+ 1− L(ut)− L(ut+1))

= (2n− 1)(d+ 1)− 2
2n−2∑
t=1

L(ut) + L(u2n−1)

= (2n− 1)(d+ 1)− 2w(Tc) + 1.
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Case - 2. |C(T )| = 2.
In this case, denote C(T ) = {w,w′}. Let T1 and T2 be two components of

T − ww′. Without loss of generality assume that w ∈ T1 and w′ ∈ T2. De-
note the vertices of T1 as w = v1, v2, . . . , v|T1| such that 0 = L(v1) < L(v2) ≤
. . . ≤ L(v|T1|) = ⌊d/2⌋ and the vertices of T2 as v|T1|+1, . . . , vn = w′ such that
1 = L(v|T1|+1) ≤ L(v|T1|+2) ≤ . . . ≤ L(vn−1) = ⌊d/2⌋. Denote the newly added
vertices of caterpillar adjacent to w′ by v′1, v

′
2, . . . , v

′
|T1| such that ⌊d/2⌋ = L(v′1) ≥

L(v′2) ≥ . . . ≥ L(v′|T1|) = 1 and the newly added vertices of caterpillar adjacent to

w by v′|T1|+1, . . . , v
′
n such that ⌊d/2⌋ = L(v′|T1|+1) ≥ . . . ≥ L(v′n) = 1.

Define a linear order u0, u1, . . . , u2n−1 of V (Tc) as follows: Set u0 = v1 = w,
u2n−1 = vn = w′ and for 1 ≤ t ≤ 2n− 2 as follows: For 1 ≤ t ≤ 2|T1| − 1, define

ut =

{
v′(t+1)/2, if t is odd,

v(t+2)/2, if t is even.

and for 2|T1| ≤ t ≤ 2n− 2, let

ut =

{
v(t+1)/2, if t is odd,
v′(t+2)/2, if t is even.

Then note that u0, u2n−1 ∈ W (Tc) and, ut and ut+1 are in different branches for
0 ≤ t ≤ 2n− 2. Also note that d(ut, ut+1) ≤ (d+ 3)/2. Define f by f(u0) = 0 and
f(ui+1) = f(ui) + d+ 1− L(ui)− L(ui+1) for 0 ≤ i ≤ 2n− 2.

Claim - 2. f is a radio labeling of Tc and span(f) = (2n− 1)(d+1)− 2w(Tc) + 1.
Let ui and uj be two arbitrary vertices of Tc. If j − i = 1 then f(uj) − f(ui) =
f(ui+1)− f(ui) = d+ 1−L(ui)−L(ui+1) ≥ d+ 1− d(ui, ui+1) = d+ 1− d(ui, uj).
If j − i ≥ 2 then f(uj)− f(ui) ≥ 2(d + 1)− d(ui, ui+1)− d(ui+1, uj) = 2(d + 1)−
2((d+3)/2) = d−1 ≥ d+1−d(ui, uj) as d(ui, uj) ≥ 2. Hence f is a radio labeling
of Tc and the span of f is

span(f) = f(u2n−1)− f(u0)

=
2n−2∑
t=0

f(ut+1)− f(ut)

=
2n−2∑
t=0

(d+ 1− L(ut)− L(ut+1))

= (2n− 1)(d+ 1)− 2
2n−2∑
t=1

L(ut) + L(u2n−1)

= (2n− 1)(d+ 1)− 2w(Tc) + 1.
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Example 3.3. In Figure 3, a trees T with |C(T )| = 1 and the trees Tc obtained
from T with an ordering of vertices and an optimal radio labeling are shown.

u /00

u  /5417

u  /5718

u  /6019

u  /6320

u /299

u  /5016

u  /3511

u  /3210

u  /4113

u  /4414

u  /3812

u /41

u /103

u  /4715 u /227

u /196

u /134
u /258

u /72

u /165

T

TC

u  /6621

Figure 3: A tree T with |C(T )| = 1 and its Tc with rn(Tc) = 66.

Example 3.4. In Figure 4, a trees T with |C(T )| = 2 and the trees Tc obtained
from T with an ordering of vertices and an optimal radio labeling are shown.

u /00

u  /5918

u /278

u /247u  /4614

u /206

u  /5216

u /144

u /175

u  /3310

u  /3912

u /113 u /41

u /72T

TC

u  /6219

u  /5517

u  /4915

u  /3611

u  /4213

u  /7121

u  /6520 u /309

Figure 4: A tree T with |C(T )| = 2 and its Tc with rn(Tc) = 71.
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